Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter J. Scammells, ${ }^{\text {a }}$ C. Elisabet Tranberg ${ }^{\mathrm{a}}$ and Edward R. T. Tiekink ${ }^{\text {b }}$
${ }^{\text {a }}$ Centre for Chiral and Molecular Technologies, Deakin University, Geelong, Victoria 3217, Australia, and ${ }^{\mathbf{b}}$ Department of Chemistry, The University of Adelaide, Australia 5005

Correspondence e-mail:
edward.tiekink@adelaide.edu.au

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.045$
$w R$ factor $=0.152$
Data-to-parameter ratio $=17.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

6,7-Dimethyl-5-phenyl-1 H-thieno[2,3-e]-[1,4]diazepin-2(3H)-one

In the title molecule, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$, the seven-membered ring adopts a boat conformation. The carbonyl, imine and phenyl groups lie to one side of the molecule, and the thienyl ring and methylene group to the other.

Comment

Compounds related to the title compound, (I), are known to enhance agonist binding to the A_{1} adenosine receptor (Tranberg et al., 2001). In this context, the conformation of the seven-membered ring is of some interest as this determines the conformation of the N atoms which, in turn, influences activity.

(I)

The structure of (I) is shown in Fig. 1 from which it can be seen that the seven-membered ring adopts a boat conformation. In this description, the $\mathrm{N} 1, \mathrm{~N} 4, \mathrm{C} 2$ and C 5 atoms are essentially coplanar, so that the $\mathrm{N} 1-\mathrm{H}, \mathrm{C} 2=\mathrm{O} 2$ and phenyl groups lie to one side of the molecule, and the thienyl ring and methylene group to the other. Centrosymmetrically related pairs of molecules associate via hydrogen bonding between the amide groups: $\mathrm{N} 1-\mathrm{H} 10.88 \AA, \mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}} 1.95 \AA, \mathrm{~N} 1 \cdots \mathrm{O}^{\mathrm{i}}$ 2.824 (3) \AA and $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}} 173^{\circ}$ [symmetry code: (i) $2-x$, $-y,-z]$. Interactions of the type $\mathrm{C}-\mathrm{H} \cdots \pi$ also operate in the structure such that $\mathrm{C} 3-\mathrm{H} 3 b \cdots C g^{\mathrm{ii}}$ is $2.62 \AA(C g$ is the centroid of the thienyl ring), with the angle subtended at $\mathrm{H} 3 b$ being 162° [symmetry code: (ii) $x, \frac{1}{2}-y,-\frac{1}{2}+z$].

Experimental

Dry ammonia gas was introduced with ice cooling, to a solution of N -(3-benzoyl-4,5-dimethyl-thiophen-2-yl)-2-iodoacetamide (3.2 g , 8.0 mmol) in $\mathrm{CHCl}_{3}(\mathrm{dry}, 10 \mathrm{ml})$ and methanol (dry, 1 ml) over a period of 40 min . The mixture was then stirred at room temperature for a further 5 h . After this time, ice and water were added. The organic phase was washed with NaHCO_{3} solution (saturated, 10 ml), $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{ml})$ and dried with MgSO_{4}. Subsequent removal of solvent under reduced pressure gave 2.024 g of crude product which was purified with silica chromatography. Hexane-ethyl acetate (1:1) as eluent gave the product $(1.158 \mathrm{~g}, 53 \%)$ which was recrystallized from ethyl acetate to give clear crystals, m.p. (decomposition) 511-

Received 9 March 2001
Accepted 14 March 2001
Online 23 March 2001
$514 \mathrm{~K} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}\right) \delta 1.50\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.24\left(s, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.80\left(d, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.50\left(d, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 7.39-7.45\left(m, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 11.03$ ($b r, s, 1 \mathrm{H}, \mathrm{NH}$). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}) $\delta 12.43,14.09,57.85,125.02$, 125.94, 128.26, 128.34, 128.98, 129.93, 138.48, 142.48, 166.36, 168.29.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=270.34$
Orthorhombic, Pbca
$a=34.115$ (6) \AA
$b=10.4377$ (17) \AA
$c=7.484$ (3) \AA
$V=2664.7(13) \AA^{3}$
$Z=8$
$D_{x}=1.348 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 24
reflections
$\theta=7.4-10.3^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, colourless
$0.50 \times 0.31 \times 0.18 \mathrm{~mm}$

Data collection
Rigaku AFC-7R diffractometer
ω scans
5860 measured reflections
3057 independent reflections
2084 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.152$
$S=1.02$
3057 reflections
173 parameters

H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1 P)^{2}\right]
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.25 \mathrm{e}^{-3}$
$h=0 \rightarrow 44$
$k=-13 \rightarrow 10$
$l=-8 \rightarrow 9$
3 standard reflections every 400 reflections intensity decay: 0.6%

Data collection and cell refinement: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1996); data reduction: TEXSAN (Molecular Structure Corporation, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The Australian Research Council is thanked for support.

Figure 1
The molecular structure and crystallographic numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level (ORTEPII; Johnson, 1976).

References

Altomare, A., Cascarano, M., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1996). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1997). TEXSAN for Windows. Version 1.05. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA. Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Tranberg, C. E., Zickgraf, A., Giunta, B. N., Luetjens, H., Figler, H., Falke, R., Fleischer, H., Linden, J., Scammells, P. J. \& Olsson, R. A. (2001). J. Med. Chem. Submitted.

